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EXECUTIVE SUMMARY 

 

The main objective of this research was to develop and deploy a wireless crack sensing 

system that can measure and monitor cracks for both concrete and steel bridge structures. This 

system contains the sensing unit, wireless data transmitting system, as well as a data processing 

unit. The sensing unit consists of single or arrays of advanced thin film-based sensing nodes that 

are capable of measuring crack induced strains in bridge structures. This thin film sensing node 

contains soft polymer film (polyvinylidene difluoride, PVDF) embedded with conductive 

nanoparticles (graphene) or atomically thin films. Both the Poisson’s effect and contact mechanism 

were considered to covert the strain to electrical resistance of the sensing unit. This sensing unit is 

also connected to a wireless transmitting system to broadcast the signal wirelessly. The wireless 

transmitting system utilizes a blue-tooth technology that can enable the sensing unit to broadcast 

electronic signals in terms of electrical resistance. These signals were received by a mobile device 

(laptop or cellphone) that can convert the electrical resistance information into the measured stains. 

These measurements are processed using the data processing unit. The data processing unit  

receives the electrical resistance data and converts it into measured strains. The machine learning 

approach was also taken to train the software to be able to automatically detect the abnormalities 

in the measured strain for critical crack growth detection. 

 

Keywords: Bridge; Cracking; Sensor; Nanocomposite; Graphene: Raspberry Pi, Cloud, Machine 

learning 

  



v  

CONTENTS 

 
COPYRIGHT ............................................................................................................................................... iii 
DISCLAIMER ............................................................................................................................................. iii 
ACKNOWLEDGMENTS ........................................................................................................................... iii 
EXECUTIVE SUMMARY ......................................................................................................................... iv 

CONTENTS .................................................................................................................................................. v 

LIST OF FIGURES ..................................................................................................................................... vi 
1. INTRODUCTION ................................................................................................................................. 1 

1.1 Problem Statement .............................................................................................................................. 1 

1.1.1 Corrosion and cracking .................................................................................................................... 1 

1.1.2 Existing sensing approaches ............................................................................................................. 2 

1.1.3 Proposed sensing materials and mechanisms ................................................................................... 3 

1.1.4 Data transmission, crack growth warning, and self-efficient energy system ................................... 5 

1.2. General Approaches, Challenges, Solutions, and Tasks ........................................................................ 6 

2.  RESEARCH PROGRAM ........................................................................................................................ 9 

2.1 Task 1: Materials Synthesis, Sensor Fabrication, and Sensor Validation ............................................... 9 

2.1.1 Materials synthesis ........................................................................................................................... 9 

2.1.2 Sensor fabrication ........................................................................................................................... 11 

2.1.3 Sensor validation ............................................................................................................................ 12 

2.2 Task 2: Hardware for Data Acquisition and Transmission ................................................................... 15 

2.2.1 Arduino and Raspberry Pi .............................................................................................................. 15 

2.2.2 Standalone system .......................................................................................................................... 17 

2.3 Task 3: Software Development Including Cloud Data Storage and Machine Learning ....................... 19 

2.3.1 Data transmission and cloud storage .............................................................................................. 19 

2.3.2 Machine learning understanding thermal straining and abnormal signal detection ....................... 21 

3. RESULTS & DISCUSSION ............................................................................................................... 30 

4. CONCLUSIONS & FUTURE STUDIES ........................................................................................... 33 

5.  REFERENCES ...................................................................................................................................... 34 

APPENDIX ............................................................................................................................................... A-1 
 



vi  

LIST OF FIGURES 

Fig. 1: (a)-(c) Corrosion induced structural failures for steel bridges; (d) associated cost in 
repairs [1]. ....................................................................................................................................... 1 
Fig. 2: Design of a typical metal foil strain gage [2]. ..................................................................... 2 
Fig. 3: Design of typical mechanical strain gage (extensometers): (a) Berry, (b) Huggenbeger, (c) 
Johansson [3]. .................................................................................................................................. 3 
Fig. 4: (a) (b) TEM images of PVDF-graphene with different concentration of graphene oxides; 
(c) Molecular structures of reduced graphene oxides with PVDF [8] ............................................ 5 
Fig. 5: (a) Synthesize electrochemically exfoliated graphene, (b) disperse graphene in DMF, (c) 
mix PVDF and graphene in DMF, (d) spray PVDF/graphene to Si wafer and (e) connect wires 
and coat PDMS protection layer. .................................................................................................. 10 
Fig. 6: (a) Coat graphene onto glass fiber surfaces, (b) the graphene coated glass fiber structure, 
(c) optical image of single glass fiber coated with graphene, (d) bundle of coated glass fiber. ... 12 
Fig.7: (a) Experiment set up for resistance measurements, (b) average resistance versus 
graphene concentration, (b) average resistance versus stirring time............................................. 13 
Fig. 8: (a) Experiment set up for strain sensor calibration, (b) load versus strain and ∆R/R_0 
versus strain. .................................................................................................................................. 14 
Fig. 9: Force versus strain and ∆R/R_0 versus strain. .................................................................. 15 
Fig. 10: Arduino DAQ system built and utilized for our prototype sensor calibration. ............... 16 
Fig. 11: (a) Illustrative comparison of 16-bit and 3-bit resolution, (b) sensor with Pi system ..... 18 
Fig. 12: Potable sensing system .................................................................................................... 18 
Fig. 13: Sensing system with solar power integrated ................................................................... 19 
Fig. 14: (Top panel) Sensing data uploaded to server and displayed on web app in real-time: x-
axis is time in hour, y-axis is the resistance readings in ohm; (bottom panel) cloud data service 
by firebase. .................................................................................................................................... 20 
Fig. 15: (Left panel) illustration of sensing system, (right panel) sensor installation location with 
control box nearby. ....................................................................................................................... 21 
Fig. 16: Workflow scheme followed to develop relationships ..................................................... 23 
Fig. 17: Feed forward neural network structure ........................................................................... 24 
Fig. 18: System fit of network with 10 hidden layers .................................................................. 24 
Fig. 19: Performance results of network with 10 hidden layers ................................................... 25 
Fig. 20: System fit of network with 50 hidden layers .................................................................. 26 
Fig. 21: Performance results of network with 10 hidden layers ................................................... 26 
Fig. 22: System fit of network with 25 hidden and included disturbances .................................. 28 
Fig. 23: (a) Schematic illustration and (b) setup of the low-pressure chemical vapor deposition 
system, MFC, mass flow controller for graphene growth [13]. .................................................... 30 
Fig. 24: (a) Monolayer graphene on copper substrate and (b) Raman spectroscopy of monolayer 
graphene ........................................................................................................................................ 31 
Fig. 25: Airbrush used to apply coating ..................................................................................... A-1 
Fig. 26: 8% PVDF/graphene suspension .................................................................................... A-1 
Fig. 27: Alternative flexible sensing system design (unexplored) ............................................. A-2 
Fig. 28: Electrochemical exfoliation of graphene process ......................................................... A-2 
Fig. 29: Preparing PVDF/graphene paste ................................................................................... A-3 
Fig. 30: Preparing PVDF/graphene paste: weighted curing ....................................................... A-3 
Fig. 31: Dimension and structure of the thin film sensor ........................................................... A-4 
Fig. 32: Piezoresistive sensing mechanism: dark lines are graphene ......................................... A-4 



vii  

Fig. 33: Preliminary breadboard setup for DAQ ........................................................................ A-5 
Fig. 34: Cellphone reading calibration using bluetooth ............................................................. A-5



1  

1. INTRODUCTION 

1.1 Problem Statement 

1.1.1 Corrosion and cracking 

Corrosion is one of most critical reliability issues of our crumbling civil infrastructure as 

shown in Fig. 1a-c. The annual budget for repairs and maintenances caused by corrosion is about 

$1 trillion considering inflation in 2013, $276 billion at 1998, and actual cost paid at least $552 

billion [1] as illustrated in Fig. 1d. In addition, the corrosion induced structural cracking and 

failures are most common for bridge structures constructed either with structural steel or reinforced 

concrete, which can cause catastrophic failures that may lead to loss of human lives. Therefore, 

monitoring corrosion induced strain and failures and providing timely warning are essential to the 

daily operations of transportation infrastructure.  

 

Fig. 1: (a)-(c) Corrosion induced structural failures for steel bridges; (d) associated cost in 

repairs [1]. 
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1.1.2 Existing sensing approaches 

Two main approaches have been commonly taken to develop such systems: (1) fiber-optic 

sensors and (2) electrical-resistance based sensing devices. However, due to the size limitation on 

the spectrum scope as well as the required continuous length, it is extremely challenging to 

fabricate a compact and portable and wireless fiber-optic sensor.  

On the other hand, the electrical-resistance based sensor can be downsized, making them 

ideal candidates for the next-generation wireless sensing platform. However, the commercially 

available strain sensors cannot satisfy the critical requirement for crack sensing which is to have 

both the high resolution and large sensing range simultaneously without enlarging the sensor size. 

The root cause of the drawback was rooted in the basic design of the commercially available strain 

gages (typically metal foil strain gauge) as illustrated in Fig. 2. By embedding a thin metal coil to 

the hard polymer substrate, this type of strain gauge relies on the relatively small stretching of the 

coil segments within each grid length to amplify the changes of electrical resistance. Due to the 

high sensitivity of metal to straining, a high resolution in terms of strain measurements can be 

achieved. However, for a relatively large strain, which is often time observed in crack sensing, this 

design loses it appeal due to the low failure strain of the metal coils.  

 

Fig. 2: Design of a typical metal foil strain gage [2]. 
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To overcome this shortcoming, the mechanical sensors have been widely used for crack 

measurements. One of the most adopted mechanical sensors is the extensometers as illustrated in 

Fig. 3. These mechanical strain gages utilize levers to mechanically magnify the cracking within 

the gage length to achieve better resolutions. Although these devices are relatively reliable and 

have the range of measurements needed, their need for installation and vulnerability to 

environmental conditions (rain, moisture, and low temperatures) make them impossible for long-

term crack sensing and monitoring. 

 

 

Fig. 3: Design of typical mechanical strain gage (extensometers): (a) Berry, (b) Huggenbeger, 

(c) Johansson [3]. 

 

Certainly, there are other types of crack sensing including the non-contact image-based 

measurements [4]. However, these image-based methods have high requirements for lighting 

conditions, surface textures, as well as image acquisition equipment.  

1.1.3 Proposed sensing materials and mechanisms 
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To overcome the challenge to find a new sensing approach for cracks that offers both high 

resolution and long-range measurements, we turn our attention to the rapidly developed functional 

soft materials. Active or functional soft materials are often time polymeric composites that have 

functional fillings to achieve exceptional electrical, optical, or magnetic properties. The early 

explorations were the combination of carbon black particles deposited on rubbery substrates [5]. 

However, the relatively large carbon black particles and difficulties of achieving uniform mixes 

posed challenges in consistencies for large scale applications.  

With the rapid growth of nanotechnology, graphene has emerged as ideal material for 

sensing applications, which has exceptional conductivity, dispersion capability, as well as 

durability [6]. For the matrix materials, PVDF has drawn a tremendous amount of attention due to 

its interesting piezoelectric properties. Polyvinylidene difluoride (PVDF) is a thermoplastic 

polymer with a semi crystalline microstructure and a varied polymorphism, showing high 

compliance, thermal and chemical stability, and piezoelectric and pyroelectric properties. These 

properties are the base of different applications such as tactile sensors, infrared imaging devices, 

actuators, electrolyte-gated transistors, etc. [7]. The incorporation of different nanofillers is a way 

to further improve the performance of raw PVDF and extend its applications (Fig. 4). In this project, 

we utilized the graphene as the nanofillers to create the network structure. This conductive network 

structure offers two sensing mechanisms: (1) the piezoresistive mechanism, where the stretching 

of PVDF matrix changed the internal contact of graphene flakes leading to changed electrical 

resistance, and (2) the piezoelectrical mechanism, where the local electrical field generated by the 

networked graphene structure offered change of resistance as well. We found that the 

piezoresistive mechanism is dominant due to the almost linear relationship between the straining 

and electrical resistance, which is convenient for the proposed crack sensing. In addition, the 
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inherently large deforming capability of PVDF offered the possibility for the required large 

cracking strain. 

 

Fig. 4: (a) (b) TEM images of PVDF-graphene with different concentration of graphene oxides; 

(c) Molecular structures of reduced graphene oxides with PVDF [8] 

 

1.1.4 Data transmission, crack growth warning, and self-efficient energy system 

For data transmission system, we needed a portable, integrated computer device that could 

effectively receive, process, analyze the strain data as well as detecting and tracking the 

abnormality of the data. The ideal system should also be low cost and low power consumption so 

that it will be affordable to large scale applications. To achieve this purpose, we selected the 

recently emerged Raspberry Pi systems [9], which offers both flexibility in integrating data 

receiving and processing units. 
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For the data processing, we needed a real-time, automatic “processer”, that reviewed the 

strain data, processed the data, and understood the trend of the data to establish a baseline for 

normality. Then when an incident (such as sudden crack growth) occurs, this “processer” can 

detect and send corresponding messages to bridge engineers. For long term monitoring, we cannot 

rely on a human to process, which could be costly and ineffective. We then sought the help of 

recently developed machine learning approach to achieve this detection. In this project, we utilized 

the deep artificial neural network (ANN) approach to establish the data normality. For the case 

study, we installed the sensing system to the exterior railing of a residential building to understand 

the thermal straining phenomenon. When an incident such as sudden impact occurs, we observed 

a sudden increase of strain, which can then be detected by the trained ANN approach. This 

provided the potential solution to the crack growth warning issue. Finally, we also needed to reduce 

the entire system to run on a small capacity energy storage device (e.g., a 9-volt battery), which 

should be able to be charged by a solar panel to achieve self-energy efficiency for targeted long-

term monitoring. 

1.2. General Approaches, Challenges, Solutions, and Tasks 

From the literature study and rationalization presented in Section 1.1, we  decided to utilize 

the PVDF polymer matrix and graphene nanofillers to make the soft piezoresistive sensor, which 

is capable of large deformations with high strain to electrical signal sensitivity. We also decided 

to utilize Raspberry Pi devices to integrate the data acquisition, processing, and wireless 

transmission. We utilized machine learning to further process the data, learn the normal strain 

variation trend and detect abnormal strain readings. Combining these three techniques, delivered 

a novel sensing system that can wirelessly sense a crack, detect crack growth, and alert engineers 

in real time. Despite the promise, there are several critical questions that needed to be answered 

from the application aspects: 
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(1) Can we achieve low cost, large scale processing to deliver high quality of graphene needed for 

the sensor fabrication? 

(2) Does the microstructure of the sensor matter in terms of sensing sensitivity? (i.e., is thin-film 

structure better than the popular core-shell fiber structure?) 

(3) What is the optimum percentage of nanofillers we should use to achieve high sensitivity? 

(4) Can we achieve portable packaging for the sensing unit with desired data acquisition, 

processing, and transmission? 

(5) Can artificial neural network (ANN) approach understand the relationship between strain 

measurements and normal load? Can it detect abnormal strain measurement? 

Among them, Questions 1-3 are related to the materials and sensor fabrication, which were 

addressed in Task 1. Question 4 belongs to the hardware component, which was addressed in Task 

2. Question 5 belongs to the data processing software, which was addressed in Task 3. The specific 

contents of these three tasks are summarized below: 

Task 1: Materials synthesis, sensor fabrication, and sensor validation 

We developed a low cost and efficient way to produce graphene flakes using 

electrochemical exfoliation method. In addition, we compared the two types of sensors made with 

two different structures: (1) PVDF-graphene thin film sensor for small cracks; (2) zig-zag shaped 

sensor with graphene coated glass fiber to cross large initial cracks. We also conducted the 

validation for the two types of sensors. 

Task 2: Hardware development for data acquisition and transmission 

We developed the Raspberry Pi system and converted the analog signal to digital signal for 

the ease of data transmission and data precision. We also developed the portable package with 

solar-panel energy harvesting device for self-efficiency. In the end, we established an online real-

time database that allows us to transmit the data using cellular network (4G) and store them in the 
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cloud server. The cloud server was also able to message other mobile devices if certain abnormality 

was observed. 

Task 3: Software development including cloud data storage and machine learning for strain 

data processing 

We developed the online platform for data storage and processing. In addition, we also 

explored the usage of machine learning to understand the “normal” strain variation and 

differentiate the abnormal signals from the normal trend. We also validated this approach with a 

simple case study. 
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2.  RESEARCH PROGRAM 
      2.1 Task 1: Materials Synthesis, Sensor Fabrication, and Sensor Validation 

2.1.1 Materials synthesis 

The materials needed in this study were graphene flakes, PVDF polymers, PDMS polymers, 

as well as glass fibers. To reduce cost, we developed an electrochemical exfoliation process to 

produce large amounts of graphene sheets with significantly lower cost than the conventional 

chemical vapor deposition (CVD) approach [10]. The specific details of material synthesis are 

provided below. 

Graphene: In this work, electrochemically exfoliated graphene was synthesized, which 

have the advantage in low cost and high production. Briefly, Graphite foil (Alfa Aesar, 0.5 mm 

thick) was cut into 2.5 cm × 8 cm pieces and used as the anode and source of graphene for the 

electrochemical process, while a graphite rod (Graphite Store, diameter of 24.5 mm) was employed 

as the counter electrode. 0.1 M solution of ammonium sulfate (NaSO4) was purchased from Sigma-

Aldrich and used as the electrolyte in aqueous solution (as shown in Fig. 5a). The working 

electrode’s exfoliation occurs as an immediate consequence of the applied voltage between the 

two electrodes, for example, +15 V (ISO-TECH IPS-603 DC power supply), which generates a 

starting current of ∼0.4 A. Produced powder was collected by vacuum filtration on PTFE 

membranes (pore diameter of 5 μm), and after several rinsing steps needed to remove salt residuals, 

it was dispersed in N,N-Dimethylformamide (DMF) (Sigma Aldrich) by mild sonication for 20 

min (as shown in Fig. 5b). Using DMF as a solvent helped avoid the aggregation of graphene. 

Such dispersion was kept decanting for 48 h to promote the sedimentation of unexfoliated material. 

After that, supernatant solution was taken as monolayer graphene dispersion. The lateral size of 

monolayer graphene is ~ 1µm. The filtration process was repeated, and the collected monolayer 

graphene was dried in a vacuum oven overnight for future use. 
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PVDF matrix materials: Polyvinylidene fluoride (PVDF) has unique properties such as 

highest chemical resistance, high temperature sustainability, and it has been applied in a wide 

variety of fields such as piezoelectric, pyroelectric, etc. In this work, PVDF with molecular weight 

of 100000 g/mol from Alfa Aesar was utilized for the matrix material for the sensor.  

PDMS sealant materials: Polydimethylsiloxane (PDMS) Sylgard 184 was purchased from 

Dow Corning. PDMS preparation procedure was as follows. Firstly, we mixed the PDMS and 

curing agent with weight ratio of 10:1. Secondly, we degassed the mixer to remove bubbles. After 

pouring to the area needed, the PDMS sealant was cured at 70 °C for 0.5 h. 

 

Fig. 5: (a) Synthesize electrochemically exfoliated graphene, (b) disperse graphene in DMF, (c) 

mix PVDF and graphene in DMF, (d) spray PVDF/graphene to Si wafer and (e) connect wires 

and coat PDMS protection layer. 
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2.1.2 Sensor fabrication 

Two types of sensors were fabricated including the PVDF/graphene thin film sensor for the 

small cracks and the graphene coated fiber sensor for large cracks. For the PVDF/graphene thin 

film sensor, graphene was mixed with PVDF first to form a thin layer then packaged with PDMS 

sealant layer with electrodes embedded in the PVDF/graphene layer. For the fiber sensor, the 

graphene was firstly coated on top of glass fiber, then the coated fibers were bundled and glued to 

the surface for crack detection. The fabrication details are described below. 

PVDF/graphene thin film sensor for small cracks: To prepare PVDF/graphene 

nanocomposites with different weight fractions of graphene, the procedure is as follows. Initially, 

a fixed amount of graphene was dispersed in DMF by sonicating for 60 min. Meanwhile, a fixed 

amount of PVDF polymer was dissolved in DMF with the help of a magnetic stirrer for 30 min. 

Then, these two solutions were mixed by sonicating for 1 h, followed by magnetic stirring (as 

shown in Fig. 5c). The mixed solution was sprayed onto a Si wafer using an Airbrush (Master 

Airbrush) as shown in Fig. 5d. The nozzle size was 0.5 mm, and the operating pressure is 80 psi. 

To increase the hydrophilicity of the Si wafer surface, firstly, Si was cleaned by soaking it in 

acetone at 55 °C, followed by rinsing in methanol and distilled water; then, the Si wafer was soaked 

in piranha solution (vol. ratio 3:1 of H2SO4 and H2O2) for 6 h. After slowly evaporating DMF 

solvent at 50 °C, PVDF/graphene film was peeled off from the Si wafer and cut into the needed 

shape using a cutting machine (Silhouettes). Cu wires were bonded to both sides of the 

PVDF/graphene film using Ag paste, which helped reduce contact resistance. At last, PDMS, 

which acted as a protection layer was spin-coated onto both sides of PVDF/graphene film 

respectively (2000 rpm for 30 s) and cured (as shown in Fig. 5e).  

Fiber based zig-zag sensor for large cracks: To improve the adhesion between the 

graphene glass fibers, the fiber surfaces were chemically treated and exposed to oxygen plasma. 
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At first, glass fibers were heat treated at 600 °C for 1 h in a box furnace (Thermal Scientific) to 

remove residual coating on fibers from the commercial manufacturing process. Next, fibers were 

treated in Piranha solution for 10 min followed by washing with DI water to make the surface more 

hydrophilic. To coat the glass fibers with electrochemically exfoliated graphene, firstly, 10 mL of 

aqueous graphene solution (3–5 mg/mL) was poured into a plastic weighing boat (10 cm diameter). 

After that, surface treated glass fiber bundles were dipped into a graphene in DMF dispersion, 

which contains monolayer graphene, for 5 min followed by drying in air for 5 min (as shown in 

Fig. 6a). This process was repeated with varying number of dips with a range of 5, 20, and 50 dips. 

The glass fiber with graphene coating is shown in Fig. 6b.  

 

Fig. 6: (a) Coat graphene onto glass fiber surfaces, (b) the graphene coated glass fiber structure, 

(c) optical image of single glass fiber coated with graphene, (d) bundle of coated glass fiber. 

 

2.1.3 Sensor validation 
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For PVDF/graphene composite, two variables that were noticed to affect the film resistance 

during the manufacturing process, were graphene concentration by weight and the stirring time of 

the PVDF/graphene mixture. The experiment set up, as shown in Fig. 7a, was used to study how 

these two factors influence the film resistance. Multiple PVDF/graphene composites with 

graphene concentration in weight range from 1% to 9% were prepared and the resistance of each 

film was recorded as shown in Fig. 7b. It was found that with the increase of graphene 

concentration, the film resistance decreased. However, the decreasing resistance terminated at 50 

kΩ when the graphene concentration arrived at 8%, which indicated the effect of graphene on 

increasing conductivity was saturated (shown in Fig. 7c).  The graphene with 8% concentration 

was used to determine the effect of stirring time of PVDF/graphene inside DMF on film resistance. 

Solutions were stirred from 1 – 25 hours at 2500 rpm using a magnetic stirring stick.  

 

Fig. 7: (a) Experiment set up for resistance measurements, (b) average resistance versus 

graphene concentration, (b) average resistance versus stirring time. 
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To calibrate the PVDF/graphene composite used as a strain sensor, the composite was 

bonded onto an aluminum with a pre-crack in the middle. Then the aluminum plate was loaded in 

the Instron Testing Machine for tensile testing as shown in Fig. 8a. Load versus displacement curve 

was obtained from Instron and load versus strain at PVDF/graphene bonded area was calculated. 

At the same time, the resistance values of PVDF/graphene composite were also recorded by a 

National Instruments Data Acquisition system with the composite in a quarter Wheatstone bridge 

configuration. The results were shown in Fig. 8b and the gauge factor was calculated to be 20 using 

the equation ∆𝑅𝑅/𝑅𝑅0
𝜀𝜀

, where ∆𝑅𝑅 is resistance change, 𝑅𝑅0 is initial resistance, and 𝜀𝜀 is strain. Then, in 

the application, the strain could be calculated when the ∆𝑅𝑅/𝑅𝑅0 is measured.  

 

Fig. 8: (a) Experiment set up for strain sensor calibration, (b) load versus strain and ∆R/R_0 

versus strain. 

 

Due to the limitation of glass fiber length and resolution of strain measured, a micro tensile 

tester was used to do calibration of the graphene coated glass fiber. Cu films were glued to the 

edges of the glass fiber to avoid slip between clamps of the micro tensile tester and the glass fibers. 

Similarly, force versus strain and ∆𝑅𝑅/𝑅𝑅0 versus strain curves were obtained and shown in Fig. 9. 
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The gauge factor was calculated to be 5, which indicated the graphene coated glass fiber has less 

sensitivity than PVDF/graphene composited when used as a strain sensor. 
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Fig. 9: Force versus strain and ∆R/R_0 versus strain. 

 

From the sensor validation experiments conducted, we have validated that the sensor can provide 

high sensitivity in terms of straining. The limit of detection for the strain was found to be about 

1x10-4, which is comparable to the commercially available metal coil type strain gage. However, 

the range of measurements (total stretching of the sensor) was about 200% of its original length, 

far exceeding any commercially available metal coil type strain gage. These results demonstrated 

that the developed nanocomposite sensor can satisfy the required strain measurements. 

  2.2 Task 2: Hardware for Data Acquisition and Transmission 

2.2.1 Arduino and Raspberry Pi 

In this section, we discussed the two data acquisition systems in conjunction with the sensors 

developed: (1) the Arduino DAQ system, and (2) the Raspberry Pi system. We utilized the Arduino 

DAQ system first since it was readily available in the lab and has exhibited excellent performances 
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for some of our other sensors [11]. In addition, we preferred its on-board Bluetooth transmitter, 

which can help pass the data directly to our mobile computing devices. The layout of the Arduino 

system utilized in the calibration of our prototype sensors is shown in the Fig. 10 below. 

 

 

Fig. 10: Arduino DAQ system built and utilized for our prototype sensor calibration. 

 

In the Arduino DAQ system, the crack/strain sensor works as a potentiometer in the system 

where their changing resistance was measured against a constant resistance. However, we soon 

realized that there are several disadvantages using the Arduino DAQ system: (1) the signal output 

is 10-bit resolution, which gives steps of 4.88 mV, which is too coarse for fine strain readings; (2) 

the Arduino DAQ system needs separation components that work with it to achieve other functions 

including data transmission via cellular network, solar power management system, video recording 

capability, as well as analog to digital conversion. 

Based on these limitations, we selected the Raspberry Pi system (Pi system for short). 

Taking advantage of the flexibility of the Pi system, we were able to have the following new 

features. (1) We were able to transmit data via 4G cellular network. This feature allowed the data 

to be transmitted in long range to remote servers. This feature also allowed the server to directly 
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receive .txt files and store them, which accelerated the data processing and message sending. (2) 

A solar power management system was successfully built and incorporated using the Pi system. 

This was crucial since we needed to manage the power consumption to achieve long-term 

monitoring reliability. For instance, with the Pi system, we have successfully demonstrated that 

we can utilize 9Ah battery maintained by a 6W solar panel for continuous power supply. The 

specific power management strategies we explored were: (i) dynamic control of sampling rate, and 

(ii) periodic shut-down and activate the system. (3) The Pi system allows video feed, which allows 

future surveillance and inspection of infrastructure. In addition, we explored the usage of a 5 

Megapixel camera, and up to 1080p@36fps with a 20-180° field of view. However, due to the 

limitation of the scope, we did not include the details of video feed in this research. (4) Finally, the 

Pi system had a convenient 16-bit resolution analog to digital converter as illustrated in Fig. 11a. 

With this digital conversion, we obtained a more precise strain data collection. 

2.2.2 Standalone system 

Specifically, we showed the Pi-integrated sensing system (only sensor and DAC) is highly 

portable, and that we can enclose the system to be within a water-proof box with a 9 V battery 

inserted as illustrated in Fig. 12. It should be noted that each DAC system can handle 8 sensors 

sensing and recording simultaneously. To extend the field life of the sensing system, we also 

equipped the sensing system with a solar power system and a charge regulator as illustrated in Fig. 

13. This solar powered system was finalized and recommended for field implementation.  
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Fig. 11: (a) Illustrative comparison of 16-bit and 3-bit resolution, (b) sensor with Pi system 

 

Fig. 12: Potable sensing system 



19  

 

Fig. 13: Sensing system with solar power integrated 

  2.3 Task 3: Software Development Including Cloud Data Storage and Machine Learning  

2.3.1 Data transmission and cloud storage 

With the hardware completed, we then built the cloud data storage, transmission mechanism 

as well as the machine learning assisted data processing algorithm. The data collected from the Pi-

system was uploaded to the cloud through the cellular 4G network. The team made inquiries to the 

local wireless communications service providers (ATT and T-Mobile). The cost of each data 

transmission line is about $15-$25 (no images), which is sufficient for more than 100 sensors if 

data management is implemented (dynamic scanning rate). For a server, we utilized the on-line 

free service from Google Firebase Realtime Database [12]. 

We tested our system working with the server. The preliminary data transmitted to the server 

using the temporary sim card are plotted in Fig. 14. It should be noted that the web app was 

programmed to display these data in the real-time, which can also be sent to cellphones or other 

mobile computing devices in real-time. 
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Fig. 14: (Top panel) Sensing data uploaded to server and displayed on web app in real-time: x-

axis is time in hour, y-axis is the resistance readings in ohm; (bottom panel) cloud data service 

by firebase. 

 

For the preliminary test, the strain/crack sensors were attached to the railing of the 

residential building as illustrated in Fig. 15. From the sparse data displayed in Fig. 14 (which is 

adjustable by using different scanning rate), we found significant fluctuations of strain data with 

respect to time. It is suspected that the sensors are sensitive to thermal fluctuation, periodic local 

vibration, as well as other disturbance. This complex environmental loading, especially the thermal 
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effect, should be excluded when judging the abnormal strain increase possibly due to excessive 

structural load. 

 

Fig. 15: (Left panel) illustration of sensing system, (right panel) sensor installation location with 

control box nearby. 

 

2.3.2 Machine learning understanding thermal straining and abnormal signal detection 

Thermal strain is a critical aspect in structural engineering. Several research projects have 

been conducted in correlating temperature with the strain reading. However, most of these works 

focus on eliminating thermal expansion of the sensor, i.e., strain gauges themselves. Very few 

works have been conducted to understand the effect of temperature on structural loading and 

response. Yet, tremendous number of structural failures can be directly related to thermal cycling. 

Perhaps, the actual reason behind this scarcely investigated issue is its complexity in nature. The 

coupling between the change of boundary conditions and thermal cycles, which is the cause of the 

structural loading caused by thermocycling, is almost impossible to decipher. In this work, we 

utilized a deep learning neural network model to extract this coupled relation and used it in an 
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analytical model to predict the behavior of the structures only using experimental data. This 

experimental data came from active monitoring systems measuring thermal strain on members 

over time. Using these systems with deep learning methods allowed us to determine the structural 

condition of infrastructure more accurately. 

Strain data was collected from an aluminum support column for a railing assembly and 

awning. Two set of strain gages were placed on the column on opposite sides to classify the type 

of stress the column is under (tension, compression, or combination). The strain gages in each set 

were installed perpendicular to each other to collect a strain value in both the x and z direction. 

Strain data was collected from the gages using a Raspberry Pi 3 B+ with a 16-bit analog to digital 

(ADC) board which allowed the Pi to understand the analog signals. The testing setup and DAQ 

system is presented in Fig. 15. Data was collected each hour measuring 10 strain data points and 

the current temperature. All the data was backed up to a database in Google Firebase. The strain 

data points for each temperature were averaged to produce a model of the temperature vs strain 

relationship. Another test was conducted in which an external strain was applied to cause a 

disturbance in the data.   

The data from these tests was initially simulated using the ‘sklearn’ and ‘mpl’ neural 

network packages in Python to simulate supervised learning techniques. This method was replaced 

with using MATLAB’s neural networking toolbox as the Python program was not accurate enough 

with the amount of collected data points. Data fitting and prediction functions were used in the 

MATLAB toolbox to create data plots of input, output, and test point plots along with their error. 

Fig. 16 presents the work schematics followed to find the desired relationship. Both the Python 

and MATLAB programs used in the experiment can be found in this section.  
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Fig. 16: Workflow scheme followed to develop relationships 

 

The first simulation conducted in the experiment was with a Feed Forward Neural Network 

with 10 hidden layers. The Levenberg-Marquardt method was used to train the network and its 

performance determined through mean squared error. The neural network and its structure can be 

seen in Fig. 17. Fig. 18 presents the structures of the neural network used with the input being 

temperature and the output being strain. From the fit plot in Fig. 17, some initial error in the training 

targets can be seen as the fitting curve stays more linear rather than fluctuating with the input data. 

This behavior reflects into the test targets and outputs with errors on each point averaging 

approximately 1.625 ohms. Since strain gages are highly sensitive, the goal was to lower this error 

as much as possible to lower than 1 ohm to ensure accurate prediction capabilities. In Fig. 19, the 

networks performance of training, test, and validation data points is presented. Using 10 hidden 

layers, the network had its best validation performance of 2.1628 at its 4th epoch. As shown on 

the plot, after 10 epochs, the validation performance does not reach an equilibrium level indicating 

some fluctuations in the accuracy of the network.  
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Fig. 17: Feed forward neural network structure 

 

 

Fig. 18: System fit of network with 10 hidden layers 
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Fig. 19: Performance results of network with 10 hidden layers 

 

Further simulations were conducted for the system by increasing the number of hidden 

layers in the network. Figs. 20 and 21 present the systems fit and performance after being simulated 

with 50 hidden layers in the network. Looking at the fit in Fig. 20, the system has more fluctuations 

but has little to no errors regarding the training data. This behavior reflects into the test data points 

with an average error of 0.875. Increasing the number of hidden layers allowed the system to 

reduce the error in training and test inputs but did see a slight increase in the validation errors when 

compared to the network with 10 hidden layers. The performance of this network showed to 

stabilize much quicker than the previous test and have a significantly larger performance of 

10.4865 at its second epoch. This increase in performance can be linked to the networks increase 

in hidden layers and being able to process these data points through 5 times more layers. Along 

with this, training, test, and validation data points were all able to come to an equilibrium efficiency 
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equal to or less than 1 creating stability in the prediction of data points. This stability is important 

in being able to properly understand and calibrate the output of the system.  

 

 

Fig. 20: System fit of network with 50 hidden layers 

 

 

Fig. 21: Performance results of network with 10 hidden layers 
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The final simulation ran was to reflect the system with disturbances included as shown in 

Fig. 22. Disturbances in the system can indicate large induced loads from an external source. Data 

from these disturbances provide valuable information in analyzing the structural loading and 

condition of the members. The disturbance in the data set provided the system with a larger outlier 

and impacted its performance. Testing various numbers of hidden layers, a total 25 proved to create 

the best fit with the smallest errors. With the disturbance in the system, the network compared the 

thermal strain values to the external loads. In Fig. 22, the fit of the system with a disturbance 

located at 9.25 is shown. The fit line follows the training data points to develop a temperature 

relationship and has a large error spike at 9.25. This is due to the system expecting one value along 

the temperature fit and getting a much larger value from the disturbance. Having this larger outlier 

has impacts on the errors elsewhere in the systems predictions and stability. Although the system 

had a larger error, knowing where the disturbance is and how it impacts the system is crucial in 

being able to analyze pure thermal straining. Along with this, being able to detect disturbances in 

the DAQ system can provide valuable feedback to pinpoint their time and locations. Using this 

information, a more accurate representation of the strain field on structures was developed.  
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Fig. 22: System fit of network with 25 hidden and included disturbances 

 

Strain data was collected for different temperatures to develop a profile for thermal cycling 

on the structural members but proved to be less stable than initially predicted due to external 

stimuli. A feed forward neural network was used to simulate the data collected from the test with 

temperature being the input and strain being the output. One simulation used a network with 10 

hidden layers to develop a relationship and had an average error of 1.625. From the simulations 

with a network of 50 hidden layers a relationship was created with an average error of 0.875 (Ω). 

This showed that the neural networks performance had a strong dependency on the number of 

hidden layers. Another simulation was conducted with large stimuli added and the system was 

added followed the temperatures trend with a large, detected error at the spot of stimuli. This 

indicates that using neural networks can be used to detect external stimuli and use it as a filtering 

effect to study thermal strain cycles. From this study, it was determined that deep learning and 

supervised learning techniques can be used for structural monitoring of infrastructure with 
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complex loading fields to detect abnormalities. The Python and MATLAB codes are listed in the 

Appendix section. 
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3. RESULTS & DISCUSSION 
We would like to discuss the results from the research program by answering the critical 

questions raised in the introduction section.  

(1) Can we achieve low cost, large scale processing to deliver high quality of graphene needed 

for the sensor fabrication? 

The answer is yes. The electrochemical exfoliation method developed in this study produced 

good quality graphene. We have compared the Raman spectroscopy data and found the 

characteristic 2D and G peaks as normally observed for CVD (Fig. 23) produced high quality 

monolayer graphene (Fig. 24).  

 

 

Fig. 23: (a) Schematic illustration and (b) setup of the low-pressure chemical vapor deposition 

system, MFC, mass flow controller for graphene growth [13]. 

 



31  

 

Fig. 24: (a) Monolayer graphene on copper substrate and (b) Raman spectroscopy of 

monolayer graphene 

 

These results give us high confidence of utilizing graphene to fabricate large quantities of 

the sensors, since the converted price for the electrochemically exfoliated graphene is below 1 

dollar per gram. It should be noted that, 1 gram of graphene could be utilized for more than 10 

sensors, which lends us confidence for even larger scale applications. 

(2) Does the microstructure of the sensor matter in terms of sensing sensitivity? (i.e., is thin-

film structure better than the popular core-shell fiber structure?) 

Both thin film and core-shell fiber sensors work very well for small and large cracks. The 

sensitivity is almost the same. However, for the glass fiber sensor, the measurements range varies 

depending on the zig-zag shape and the number of fibers in the bundle. By allowing the fibers to 

slip onto each other, we could achieve a longer range of measurements. By increasing the number 

of folds in the zig-zag pattern, we could also increase the range of measurements. However, the 

durability of the fiber sensor is still a question. Under environmental exposure, the loosely coated 

graphene flakes could be debonded from the fiber due to thermal strain and abrasion at the 
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sensor-object interface. Therefore, additional research  is needed to evaluate the durability of the 

sensors. 

(3) What is the optimum percentage of nanofillers we should use to achieve high sensitivity? 

Approximately 8% concentration was found to be the best filling ratio. When exceeding this 

value, we found that the electro-resistance of the PVDF/graphene thin film does not change 

significantly anymore, which indices excessive contact had been established within the graphene 

network structure. Beyond this threshold, nonlinear relationship is expected between the sensor 

straining and resistance change.  

(4) Can we achieve portable packaging for the sensing unit with desired data acquisition, 

processing, and transmission? 

Yes. We have successfully integrated the sensor with compact Pi-system and a 9V battery 

that can collect, process, and transmit data to the cloud server using cellular (4G) network. The 

entire system can fit into a palm size waterproof box. To allow continuous monitoring, we also 

equipped the system with a solar panel and charge regulator which can be stationed nearby the 

bridge site. One station can safely handle more than 100 sensors provided a dynamic scanning 

rate is allowed to minimize energy consumption. 

(5) Can artificial neural network (ANN) approach understand the relationship between strain 

measurements and normal load? Can it detect abnormal strain measurement? 

Yes, but not completely. The current results showed that the supervised neural network can 

learn the thermal strain fluctuations coming from the real-world experiment. It also detected 

sudden changes from strain readings due to a disturbance. However, this was done with data that 

was collected in a relatively short amount of time and with the human understanding that the 

thermal straining is the main reason for data fluctuation. To teach machine learning the complex 

loading, more field experiments are needed.  
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4. CONCLUSIONS & FUTURE STUDIES 
This pilot study on developing wireless crack sensing system for bridges has successfully 

delivered the targeted sensing system with all functions including sensing, data processing, 

transmission, data interpretation, and abnormality detection. This system was achieved by 

integrating materials science (specifically nanomaterials), electrical engineering (specifically 

hardware on data acquisition and computer communication, power management), as well as 

computer science (specifically machine learning). The success of this project showed that current 

engineering solutions need a highly inter-disciplinary and convergence research, which does not 

only require the seamless integration of available engineering tools, but also novel development 

in all fields. Specifically, we developed new material synthesis approaches, new sensor 

fabrication process, new data acquisition approaches, as well as new data interpretation methods. 

With all these developments, we have showcased the practical application of a wireless crack 

sensing system for the department of transportation.  

However, a few issues remain to be addressed. Due to the impact of COVID-19, the field 

implementation was compromised, which could reveal practice problems when installing and 

operating the developed system to the bridge sites. The potential issues include the durability of 

the bond between the sensor and the cracking surface, the reliability of the data transmission in 

rural areas with unstable cellular networks, and the battery maintenance for long term 

monitoring. These issues will be better solved in the future field experiments.  

This research has produced 2 journal publications, which are in preparation, and 2 poster 

presentations in international conferences. The funding support from this project supported 1 

Ph.D. student and 1 master student. The prototype sensors and data systems are ready to be 

transferred to the Missouri Department of Transportation through seminars and formatted 

documents and drawings.  
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APPENDIX 

This appendix contains additional figures for the sensor fabrication as well as the Python 

and MATLAB code for machine learning processing. 

 

Fig. 25: Airbrush used to apply coating 

 

 

Fig. 26: 8% PVDF/graphene suspension 



A-2  

 

 

Fig. 27: Alternative flexible sensing system design (unexplored) 

 

 

Fig. 28: Electrochemical exfoliation of graphene process 
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Fig. 29: Preparing PVDF/graphene paste 

 

 

Fig. 30: Preparing PVDF/graphene paste: weighted curing 
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Fig. 31: Dimension and structure of the thin film sensor 

 

 

Fig. 32: Piezoresistive sensing mechanism: dark lines are graphene 
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Fig. 33: Preliminary breadboard setup for DAQ 

 

 

Fig. 34: Cellphone reading calibration using Bluetooth 

 



A-6  

Python Code 

 

# import 

 

import numpy as np 

import pandas as pd 

import matplotlib 

import matplotlib.pyplot as plt 

from sklearn.neural_network import MLPRegressor 

from sklearn.linear_model import Ridge 

from mpl_toolkits.mplot3d import Axes3D 

dataset=pd.read_csv('C:/users/westo/Desktop/sn1.csv') 

X = dataset.drop('sn1', 1) 

Y = dataset['sn1'] 

X1 = X['temp'] 

#X2 = X['delta'] 

# NN training function 

 

def model_sales_MLP(dataset, hidden, print_coefs = True, max_iter= 10000000): 

    num_samples = dataset.shape[0] 

    cutoff = (num_samples * 26) // 27 

    Xtrn = dataset.drop('sn1', 1).iloc[:cutoff,:] 

    Ytrn = dataset['sn1'].iloc[:cutoff] 

    Xval = dataset.drop('sn1', 1).iloc[cutoff:,:] 
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    Yval = dataset['sn1'].iloc[cutoff:] 

    model = MLPRegressor(hidden, validation_fraction = 0, solver='adam', max_iter= 

max_iter).fit(Xtrn, Ytrn) 

    coefs = model.coefs_ 

    yhat = model.predict(X) 

    yhatval = model.predict(Xval) 

    loss = np.square(Yval - yhatval).mean() 

    hiddens = coefs[0].T 

    final_mlp = coefs[1].flatten() 

    coefs = list(zip([dict(zip(X.columns, h)) for h in hiddens], 

                     [['output mult:', m] for m in  final_mlp.flatten()],  

                     [['intercept:', i] for i in  model.intercepts_[0]])) 

    print('loss:', loss) 

    return model, yhat, coefs, loss 

# NN learning and exporting to csv file 

model, yhat, coefs, loss = model_sales_MLP(dataset, [2])  

model, yhat, coefs, loss = model_sales_MLP(dataset, [2], max_iter = 50000000, 

print_coefs=False)  

model, yhat, coefs, loss = model_sales_MLP(dataset, [2], max_iter = 50000000, 

print_coefs=False) 

dataprint = pd.DataFrame({ 

    'yhat': yhat 

}).round(5)  
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dataprint.to_csv('C:/users/westo/Desktop/sn_norm.csv') 

dataset1=pd.read_csv('C:/users/westo/Desktop/sn1-dndt.csv')  

pred = model.predict(dataset1) 

predprint = pd.DataFrame({ 

    'pred': pred 

}).round(5)  

predprint.to_csv('C:/users/westo/Desktop/sn_psid_norm.csv') 

 

MATLAB Code 

 

dataset = xlsread('sn1.xlsx', 'Sn1', 'A1:B27'); 

x = dataset(:,1)'; 

t = dataset(:,2)'; 

  

% Choose a Training Function 

% For a list of all training functions type: help nntrain 

% 'trainlm' is usually fastest. 

% 'trainbr' takes longer but may be better for challenging problems. 

% 'trainscg' uses less memory. Suitable in low memory situations. 

trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 

  

% Create a Fitting Network 

hiddenLayerSize = 50; 

net = fitnet(hiddenLayerSize,trainFcn); 
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% Setup Division of Data for Training, Validation, Testing 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

% Train the Network 

[net,tr] = train(net,x,t); 

  

% Test the Network 

y = net(x); 

e = gsubtract(t,y); 

performance = perform(net,t,y) 

  

% View the Network 

% view(net) 

% Plots 

% Uncomment these lines to enable various plots. 

%figure, plotperform(tr) 

%figure, plottrainstate(tr) 

%figure, ploterrhist(e) 

%figure, plotregression(t,y) 

%figure, plotfit(net,x,t) 
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